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Abstract
The correspondence between domain-wall and cosmological solutions of
gravity coupled to scalar fields is explained. Any domain-wall solutions that
admit a Killing spinor are shown to correspond to a cosmology that admits a
pseudo-Killing spinor; whereas the Killing spinor obeys a Dirac-type equation
with Hermitian ‘mass’-matrix, the corresponding pseudo-Killing spinor obeys
a Dirac-type equation with a anti-Hermitian ‘mass’-matrix. We comment on
some implications of (pseudo)supersymmetry.

PACS numbers: 98.80.−k, 11.30.Pb, 11.27.+d

1. Introduction

Domain-wall solutions of supergravity theories, in spacetime dimension D = d + 1, have been
intensively studied in recent years because of their relevance to gauge theories via holographic
renormalization. Initial studies concentrated on the case for which the D-dimensional
spacetime is foliated by d-dimensional Minkowski spaces; in other words, flat domain walls.
More recently, attention has been focused on curved domain walls, specifically those foliated
by d-dimensional anti-de Sitter (adS) spacetimes, although domain-wall solutions foliated by
d-dimensional de Sitter (dS) spacetimes have also been considered; we shall refer to these as
‘(a)dS-sliced’ domain walls. In all these cases, the maximal symmetry of the ‘slices’ implies
that only scalar fields are relevant to the solution, so the general low-energy Lagrangian density
of interest takes the form

L =
√

−det g
[
R − 1

2 |∂�|2 − V (�)
]
, (1.1)

for metric g, with scalar curvature R, and scalar fields � taking values in some Riemannian
target space and with potential energy function V .
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In the supergravity context, models of this type arise as consistent truncations, and a
solution for which the supersymmetry variation of all fermion fields vanishes for nonzero
supersymmetry spinor parameter ε is said to be ‘supersymmetric’. The vanishing of the
supersymmetry variation of the gravitino field leads to a ‘Killing spinor’ equation of the form
Dε = 0, where D is an exterior covariant derivative on spinors constructed from the standard
spin connection and a ‘superpotential’, which is (generically) a multi-component function
of the scalar fields that determines the potential V through a simple derivative formula.
For domain-wall solutions it turns out that the constraints on ε implied by the vanishing
supersymmetry variations of other fermion fields are algebraic integrability conditions for
the differential Killing spinor equation, so they yield nothing new. Thus, supersymmetric
domain-wall solutions are those for which Dε = 0 can be solved for some nonzero spinor ε,
which is called a ‘Killing spinor’.

One reason for interest in supersymmetric solutions of a supergravity theory, in particular
supersymmetric domain-wall solutions, is that supersymmetry implies stability; in particular,
it implies classical stability. However, classical stability cannot depend on the fermionic field
content; instead, it depends only on the existence of a Killing spinor. This is a weaker condition
than supersymmetry since, for example, the existence of a Killing spinor places no restriction
on the spacetime dimension D. This suggests a weaker definition of supersymmetry, which
has become known as ‘fake’ supersymmetry, according to which a solution is considered
‘supersymmetric’ if it admits a Killing spinor. However, the concept of fake supersymmetry
depends on an understanding of what constitutes a Killing spinor outside the supergravity
context. There is no general definition, as far as we are aware, but if we restrict our attention
to domain-wall solutions then the problem can be reduced, essentially, to a specification of
the restrictions to be imposed on the superpotential used to define the covariant derivative
operator D. As we shall see, there is an ambiguity in this supergravity-independent definition
of a Killing spinor, and one of our purposes here is to explain how this ambiguity may be
exploited in the context of cosmology.

In cosmology, the requirement of homogeneity and isotropy implies, just as for domain
walls, that the only relevant fields other than the metric tensor are scalar fields, so the
Lagrangian density (1.1) also provides a general starting point for the study of Friedmann–
Lemaître–Robertson–Walker (FLRW) cosmologies. In fact, there is a correspondence between
domain-wall solutions and FLRW cosmologies for these models. For every domain-wall
solution of the model with scalar potential V there is a cosmological solution of the same
model but with scalar potential −V , and vice versa [1]. Here we present the details of the
analytic continuations that connect the domain-wall and cosmological spacetimes that are
paired by this ‘domain-wall/cosmology correspondence’. Special cases have been noted on
many previous occasions but the generality of the correspondence seems not to have been
hitherto appreciated. It raises the question of how special features of domain walls, such as
supersymmetry, are to be interpreted in the context of cosmology. This point was addressed
briefly in [1]: cosmologies that correspond to supersymmetric domain walls are ‘pseudo-
supersymmetric’ in the sense that they admit a ‘pseudo-Killing’ spinor. The possibility of
pseudo-Killing spinors arises precisely from the above-noted ambiguity in the extension of the
notion of a Killing spinor to fake supersymmetry. Here we explain this point in more detail
and discuss possible implications of pseudo-supersymmetry for cosmology.

2. Domain-wall/cosmology correspondence

The D-dimensional spacetime metric for a d-dimensional domain wall of maximal symmetry
can be put into the form
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ds2
D = dz2 + e2βϕ

[
− dτ 2

1 + kτ 2
+ τ 2 d�2

+

]
, (2.1)

where we have introduced the D-dependent constant

β = 1/
√

2(D − 1)(D − 2), (2.2)

and d�2
+ is an SO(1, d − 1)-invariant metric on the unit radius d-dimensional hyperboloid;

we may choose coordinates such that

d�2
+ = dψ2 + sinh2 ψ d�2

d−2. (2.3)

A domain-wall spacetime is therefore determined by a scale function ϕ(z) and a constant k,
which we may restrict to the values 0,±1, without loss of generality. The local geometry of
the (d-dimensional) hypersufaces of constant z is de Sitter for k = 1, Minkowski for k = 0,
and anti-de Sitter for k = −1. For a given ‘fiducial’ choice of z, these spacetimes can be
viewed as the wall’s ‘worldvolume’; the coordinate z is thus a measure of distance from this
fiducial worldvolume. In order to preserve the local isometries of the wall’s worldvolume, the
scalar fields � must be restricted to be functions of z only.

Leaving aside domain walls for the moment, we turn to cosmology. The D-dimensional
spacetime metric for an FLRW cosmology has the form

ds2
D = −dt2 + e2βφ

[
dr2

1 − kr2
+ r2 d�2

−

]
(2.4)

where d�2
− is an SO(d)-invariant metric on the unit radius d-sphere; we may choose

coordinates such that

d�2
− = dθ2 + sin2 θ d�2

d−2. (2.5)

FLRW cosmologies are therefore determined by the scale function φ(t) and the constant k,
which we may again restrict to the values 0,±1, without loss of generality. The (d-dimensional)
constant t hypersurfaces are spheres for k = 1, Euclidean spaces for k = 0 and hyperboloids
for k = −1, corresponding to closed, flat and open FLRW universes, respectively. In order to
preserve homogeneity and isotropy, the scalar fields � must be restricted to be functions of t
only.

The above domain-wall and cosmological spacetimes are related by analytic continuation.
To see this, we start from the domain-wall spacetime of (2.1), define the new variables

(t, r, θ) = −i(z, τ, ψ), (2.6)

and then analytically continue to real values of (t, r, θ). This yields the FLRW metric (2.4) if
we define

φ(t) = ϕ(it). (2.7)

This makes it appear that φ is a complex function of t but it is actually a real function that solves
the field equations of the model with the opposite sign of both V and k. A simple example
is adSD sliced by adSd , d-dimensional Minkowski, or dSd spacetimes, which become the
k = 1, 0,−1 representations of dSD as FLRW universes. For solutions that involve the scalar
fields �, one must similarly reinterpret the functions �(z) of the domain wall spacetime as
real functions of t, which we then rename (in a slight abuse of notation) as �(t). The reason
that this analytic continuation always works, in the sense that the real functions determining a
domain wall solution become real functions determining a cosmological solution, can be seen
as follows [1].
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Let us consider the domain-wall and cosmological solutions together by introducing a
sign η such that η = 1 for domain walls and η = −1 for cosmologies. Then, in either case,
the metric can be put in the form

ds2
D = η(eαϕf )2 dz2 + e2βϕ

[
− η dτ 2

1 + ηkτ 2
+ τ 2 d�2

η

]
, (2.8)

where

α = (D − 1)β =
√

D − 1

2(D − 2)
, (2.9)

and, in order to maintain z-reparametrization invariance, we have made the replacement
dz → eαϕ(z)f (z) dz for (lapse) function f, which must be monotonic but is otherwise arbitrary;
the gauge choice f = e−αϕ yields the forms of the domain-wall or cosmological metrics given
above. The scalar fields � are functions only of z, which is a space coordinate for η = 1 and a
time coordinate for η = −1. The Euler–Lagrange equations of (1.1) then reduce to equations
for the variables (ϕ,�) that are equivalent to the Euler–Lagrange equations of the effective
Lagrangian

L = 1

2
f −1(ϕ̇2 − |�̇|2) − f e2αϕ

(
ηV (�) − ηk

2β2
e−2βϕ

)
, (2.10)

where the overdot indicates differentiation with respect to z. It follows immediately from the
form of this effective Lagrangian that for every solution of the η = 1 equations of motion for
potential V there is a corresponding solution of the η = −1 equations of motion with potential
−V , with the opposite sign of k if k �= 0, and vice versa. The domain-wall and cosmological
solutions paired in this way are precisely those related by the analytic continuation procedure
described above.

3. Fake supersymmetry

For a single scalar σ , the effective Lagrangian (2.10) reduces to

L = 1

2
f −1(ϕ̇2 − σ̇ 2) − f e2αϕ

(
ηV (σ) − ηk

2β2
e−2βϕ

)
. (3.1)

It was observed in [3] that the choice of target spaces coordinates can always be adapted to
any given solution in such a way that this solution involves only a single scalar field, so the
restriction to a single scalar is much less severe than one might suppose. For this reason, many
properties of single-scalar solutions can be extended to multi-scalar solutions. However, there
are subtleties that arise in the application of this idea that we do not wish to enter into here, so
we restrict ourselves to the one-scalar case.

An example of a supergravity model with a single scalar field is the pure minimal D = 5
gauged supergravity, and this provides a convenient, as well as physically relevant and
historically significant, starting point for a study of fake supersymmetry of domain walls.
The superpotential of this model is a real SU(2) triplet W and a straightforward generalization
of the Killing spinor equation for this model suggests that we choose the exterior covariant
derivative D, mentioned in the introduction, to be [4]

D = dxµ[Dµ + αβW · τ�µ], (3.2)

where Dµ is the standard covariant derivative operator acting on Dirac spinors, τ is the
triplet of Pauli matrices acting on SU(2) spinors, and �µ are the spacetime Dirac matrices.
By this definition, D acts on SU(2) doublets of Lorentz spinors. These would satisfy a
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symplectic reality condition in the context of minimal D = 5 supergravity but, in the spirit of
fake supersymmetry, we relax this condition here. The factor of αβ arises from a choice of
normalization of W; this is fixed by the relation between W and V , which in our conventions
is

V = 2[|W′|2 − α2|W|2], (3.3)

where the prime indicates a derivative with respect to σ .
For a domain-wall metric of the form (2.1) (i.e. for gauge choice f = e−αϕ), the Killing

spinor equation implies

∂zε = αβW · τ�zε, (3.4)

where �z is a constant matrix that squares to the identity, and

D̂ε = eβϕ�̂[(β/2)ϕ̇�z + αβW · τ ]ε, (3.5)

where D̂ is the standard worldvolume exterior covariant derivative on spinors and �̂ is the
worldvolume Dirac matrix valued 1-form.

The integrability conditions for these equations were discussed in detail in [5] and a
simplified analysis was presented in [1]. We will not repeat the full analysis here, but we note
that (3.5) has the integrability condition

ϕ̇2 = 4α2|W|2 + (k/β2) e−2βϕ, (3.6)

which upon use of the field equations leads to

σ̇ = ±2|W′|. (3.7)

The joint integrability condition of (3.4) and (3.5) is

(σ̇ + 2W′ · τ�z)ε = 0, (3.8)

which can be interpreted in the supergravity context as the condition arising from the vanishing
of the supersymmetry variation of the super-partner of σ . This and (3.7) then lead to the
projection equation

(1 ± �)ε = 0, � = W′ · τ

|W′| �z (3.9)

so the domain wall is half supersymmetric. In general, this equation has its own integrability
condition, since � is a function of z, and this implies that

(W′′ + αβW) × W′ = 0. (3.10)

From this we deduce that W must take the form

W = n Re Z(σ) + m Im Z(σ), (3.11)

where n, m are two orthonormal 3-vectors and Z is a complex function, with Z = W for real
scalar function W when k = 0. In addition, a complete analysis of consistency requires

|W × W′|2 = −k(D − 2)2 e−2βϕ |W′|2. (3.12)

It was shown in [1], by direct construction of Z(σ), that any k = 0 or k = −1 domain-
wall solution admits a Killing spinor provided that the function σ(z) is strictly monotonic;
all such solutions are therefore (fake) supersymmetric. The k = 0 case is especially simple,
and was discussed earlier in [5, 6]. A Hamiltonian perspective on the general construction
may be found in [2]. A solution for which σ̇ (z) has isolated zeros can be considered
‘piecewise supersymmetric’ but the construction breaks down completely if the zeros of σ̇ (z)
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accumulate. As shown in [2], unstable adS vacua are accumulation points and hence domain-
wall spacetimes that are asymptotic to an unstable adS vacuum are not (fake) supersymmetric,
as expected since they are also unstable. If we agree, for the sake of simplicity, to leave aside
these exceptions, then we can summarize the result by saying that all flat or adS-sliced walls
are (fake) supersymmetric.

This result was obtained for a particular choice of operator D, so we should consider
to what extent it depends on this choice. In the supergravity context, the superpotential is
generally in some non-trivial representation of the R-symmetry group that acts on the gravitino
field, this being SU(2) for minimal D = 5 supergravity. We took this D = 5 example, with
real SU(2)-triplet superpotential, as our starting point and generalized it to arbitrary dimension
D, relaxing the symplectic reality condition on the spinor in the process. Recall that one of
the implications of integrability is that the real triplet superpotential is actually determined
by a complex function Z. The restrictions on Z imposed by (3.10) and (3.12) could have
been found directly by taking D = 4 minimal supergravity as the starting point because
the superpotential in this case is naturally a complex function; this route is less convenient,
however, because of the complications of chirality. Note that an attempt to further simplify
by assuming a real singlet superpotential (as suggested by D = 3 minimal supergravity)
would restrict fake supersymmetry to flat domain walls. This is an unnecessary restriction,
so it is important to consider whether some more general superpotential might similarly show
that the restrictions obtained by the assumption of a real-triplet superpotential are similarly
unnecessary. For example, one could consider [7] the USp(4) 5-plet superpotentials suggested
by extended D = 5 supergravity. It would be surprising if this were to allow new possibilities3

because the real triplet superpotential is already unnecessarily general; it is determined by a
complex function. Moreover, the triplet superpotential is already sufficient to establish the
fake supersymmetry of almost all flat or adS-sliced domain walls. There are good physical
reasons for the exceptions, as noted above. Nor should we expect to discover that some more
general superpotential that will allow the dS-sliced walls to be considered fake-supersymmetric
because (for D > 2) there is no physically acceptable supersymmetric extension of the de
Sitter group. These considerations fall short of being a proof but they convince us that domain
walls that are not (fake) supersymmetric in the particular sense described above will not
become (fake) supersymmetric for some other choice of the exterior differential operator D.

4. Pseudo-supersymmetry

As already observed, in certain spacetime dimensions it may be possible to impose a symplectic
reality condition on ε, and this is required for D = 5 minimal supergravity since the minimal
D = 5 spinor is an ‘SU(2)-Majorana’ spinor. A symplectic reality condition on ε effectively
enforces the reality of W since complex conjugation of the Killing spinor equation Dε = 0
then yields the same equation but with W replaced by its complex conjugate. Once the
symplectic reality condition on ε is relaxed, there is no immediate reason why W should be
real, although the reality of V implies that it must be either real or pure imaginary. Of course,
if W is pure imaginary, then we can redefine it to be real at the cost of changing the covariant
derivative D from the expression given in (3.2) to

D = dxµ(Dµ + iαβW · τ�µ). (4.1)

At the same time, we must change the relation (3.3) to

V = −2[|W′|2 − α2|W|2]. (4.2)
3 Note however that such more general superpotential may be useful in establishing the existence of more than one
fake supersymmetry.
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This can be viewed as the same relation as (3.3) but for a model with scalar potential of the
opposite sign from the original model.

At this point, we see how the ambiguity in the notion of a Killing spinor outside the
supergravity context might be exploited in cosmology, because the cosmological ‘dual’ of a
domain-wall solution of a given model with scalar potential V is a solution of the same model
but with V replaced by −V . For the FLRW metric (2.4) the use of (4.1) yields the equations

∂tε = αβW · τ i�tε, (4.3)

where �t is a constant matrix that squares to minus the identity, and

D̂aε = eβϕ i�̂a[−(β/2)ϕ̇i�t + αβW · τ ]ε, (4.4)

where �a are the Dirac matrices, in a coordinate basis, for a fiducial spacelike hypersurface
of fixed t. This has the integrabity condition

ϕ̇2 = 4α2|W|2 − (k/β2) e−2βϕ. (4.5)

This is the same as (3.6) if we take k → −k, which is a consequence of the overall factor of i
on the right-hand side of (4.4). The joint integrability conditions of (4.3) and (4.4) is

(σ̇ + 2W′ · τ i�t)ε = 0. (4.6)

Because i�t squares to the identity, this is equivalent to (3.8) and hence leads to an equivalent
constraint on ε and, for k �= 0, equivalent constraints on W. To summarize, given a domain-
wall solution with k = 0,−1 there is a construction of a real triplet superpotential W such
that the wall admits a Killing spinor. The corresponding k = 0, 1 cosmological solution of the
model with V → −V then admits a spinor satisfying a similar equation but with W → iW.
We shall call such a spinor a ‘pseudo-Killing’ spinor. The difference between Killing and
pseudo-Killing spinors can be characterized as follows: by taking the ‘gamma-trace’ of the
(pseudo)-Killing spinor equation we deduce that the (pseudo-)Killing spinor satisfies a Dirac-
type equation of the form

D/ε = Mε, (4.7)

where M is a ‘mass’ matrix (albeit a non-constant one). For a genuine Killing spinor this mass
matrix is Hermitian whereas for a pseudo-Killing spinor it is anti-Hermitian.

We have now seen how to construct a pseudo-Killing spinor for a cosmological solution
of a model of the type defined by (1.1) starting from a Killing spinor associated with a
supersymmetric domain-wall solution of the same model but with the opposite sign potential.
Given that almost all flat or adS-sliced domain-wall solutions are supersymmetric, we may
now conclude that almost all flat or closed FLRW cosmologies are ‘pseudo-supersymmetric’.
Perhaps the simplest, although very special, example of a supersymmetric domain wall is
a stable adS vacuum. The dS spacetime that is its cosmological ‘dual’ is then pseudo-
supersymmetric. In the following section, we shall explore some implications of this fact.

5. Applications

Anti de Sitter space can be viewed as a special case of a flat domain-wall spacetime. It can
also be viewed as either an adS-sliced or a dS-sliced domain wall, but the standard Minkowski
slicing will be sufficient for present purposes. Given a potential V (σ), maximally symmetric
vacua correspond to constant values of σ for which V (σ) is extremized. Let us suppose that
V has an extremum at σ = 0 with ηV0 < 0, so that the vacuum is adSD for η = 1 and dSD

for η = −1. In this case V has the Taylor expansion

V = − η

2β2�2
+

1

2
m2σ 2 + O(σ 3) (5.1)
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where � is the (a)dS radius and m is the mass of the scalar field fluctuation. Let V be given by

ηV = 2[(W ′)2 − α2W 2], (5.2)

for real singlet superpotential W . This is just (3.3) with W given by (3.11) with Z = W . As
mentioned earlier, a real singlet superpotential suffices for consideration of flat domain walls,
and can be found for any V , at least in principle, by solving the differential equation (5.2) for
W . We therefore have

ηV ′ = 4W ′(W ′′ − α2W), (5.3)

from which we see that there are two types of (a)dS vacua. Those for which W ′ = 0 and
those for which W ′ �= 0 (in which case W ′′ = α2W ). The adS vacua with W ′ = 0 are the
supersymmetric vacua; this terminology is consistent with our earlier terminology for domain
walls because when σ is constant and ε is nonzero, the supersymmetry preserving condition
(3.8) reduces to W ′ = 0. Similarly, the dS vacua with W ′ = 0 are the pseudo-supersymmetric
vacua. By differentiating (5.3) and evaluating at the stationary point of W , one can derive a
bound on m2. For η = 1, this is the Breitenlohner–Freedman (BF) bound [8, 9]

m2 � − (D − 1)2

4�2
, (5.4)

which states that m cannot be ‘too tachyonic’, and the method of proof is that of [10, 11]. The
BF bound is not absolute because it is a trivial matter to construct a model with an adS vacuum
that violates the bound; these vacua are not associated with stationary points of W and are not
supersymmetric. Nevertheless, adS vacua that satisfy the bound are physically distinct from
those that do not; the former are stable, at least classically, whereas the latter are unstable.

The same procedure leads, for η = −1, to a cosmological analogue of the BF bound.
This is the upper bound [2]

m2 � (D − 1)2

4�2
. (5.5)

Again, the bound is not absolute but serves to separate dS vacua with distinct physical
properties. If this inequality is satisfied then the scalar field σ approaches its equilibrium
value at the dS vacua monotonically, like an overdamped pendulum. If the potential rises ‘too
steeply’ from its (positive) minimum, such that the bound is violated, then σ will overshoot
its equilibrium value and then oscillate about it ad infinitum as it approaches this value, like an
underdamped pendulum. This implies that a dS vacuum violating the bound is an accumulation
point for zeros of σ̇ . The same is true of adS vacua that violate the BF bound and this is
why domain walls that are asymptotic to unstable adS vacua fail to be (fake) supersymmetric.
In the cosmological case, however, it is less clear that a violation of the bound implies an
instability. One might expect the oscillations implied by a violation of the bound to cause a
particle production that could reduce the potential energy of the dS vacuum. Instabilities of
dS space due to particle production have been proposed [12] but also opposed [13]. We will
not attempt to review the current situation here; it appears from a recent analysis [14] that the
matter is still not completely resolved.
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